6. DATA ANALYSIS & DATA MANAGEMENT

Copyright Notice

- □ The majority of the information is from:
- □ Data Mining: Concepts and Techniques
 - ► Third Edition
 - ©2011 Han, Kamber, and Pei

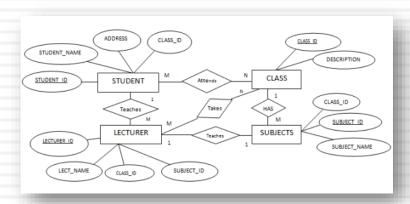
6.1: Data Objects and Attribute Types

6.1: Data Objects and Attribute Types

6.2: Basic Statistical Descriptions of Data

6.3: Data Visualization

6.4: Data Mining



Learning Objectives

- □ List types of data sets
- Describe important characteristics of structured data
- Define data object
- Understand attributes and its types

5

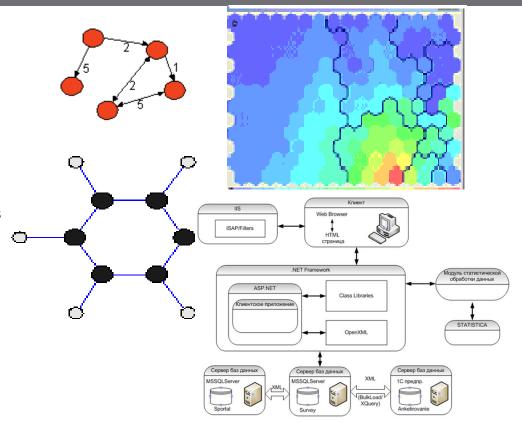
- Record
 - Relational records
 - Data matrix, e.g., numerical matrix, crosstabs
 - Document data: text documents: termfrequency vector
 - Transaction data

	team	coach	pla y	ball	score	game	⊐ <u>¥</u> .	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Types of Data Sets (2)

- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures
- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- □ Spatial, image and multimedia:
 - Spatial data: maps
 - Image data:
 - Video data:



Important Characteristics of Structured Data

- Dimensionality
 - Curse of dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Distribution
 - Centrality and dispersion

- 8
- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- □ Database rows → data objects; columns → attributes.

- Attribute (or dimensions, features, variables):
 - a data field, representing a characteristic or feature of a data object
 - E.g., customer _ID, name, address
- □ Types:
 - Nominal
 - Binary
 - Numeric: quantitative
 - Interval-scaled
 - Ratio-scaled

Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

- Quantity (integer or real-valued)
- Interval
 - Measured on a scale of equal-sized units
 - Values have order
 - E.g., temperature in C°or F°, calendar dates
 - No true zero-point
- □ Ratio
 - Inherent zero-point
 - We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Summary

- Data attribute types
 - nominal, binary, ordinal, interval-scaled, ratio-scaled
- □ Many types of data sets
 - e.g., numerical, text, graph, Web, image

14

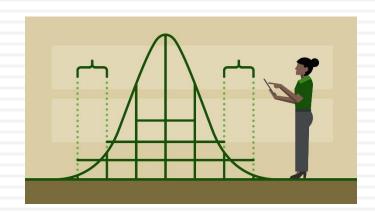
6.2: Basic Statistical Descriptions of Data

6.1: Data Objects and Attribute Types

6.2: Basic Statistical Descriptions of Data

6.3: Data Visualization

6.4: Data Mining



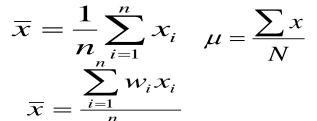
Learning Objectives

- Define measuring the central tendency
- Describe measuring the dispersion of data
- Understand properties of normal dispersion curve
- List graphic displays of basic statistical descriptions

Measuring the Central Tendency

- Mean (algebraic measure) (sample vs. population):
 - Note: *n* is sample size and *N* is population size.
 - Weighted arithmetic mean:
 - Trimmed mean: chopping extreme values
- Median:
 - Middle value if odd number of values, or average of the middle two values otherwise
 - Estimated by interpolation (for grouped data):

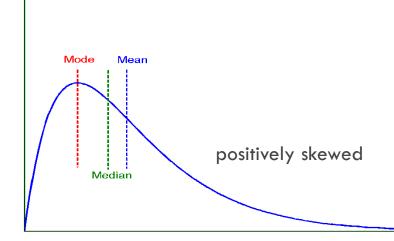
 - $median = L_1 + (\frac{n/2 (\sum freq)l}{freq_{median}}) width$ Mode
 - Value that occurs most frequently in the data
 - Unimodal, bimodal, trimodal
 - Empirical formula: $mean-mode=3\times(mean-median)$

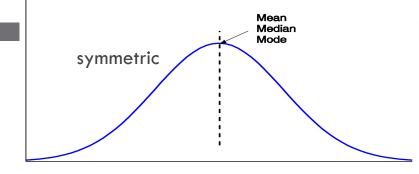


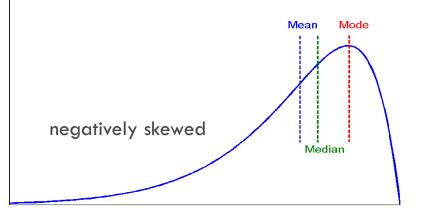
- frequency
 - 200
 - 6-15450
 - 16-20300 1500
 - 700 81 - 11044

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data







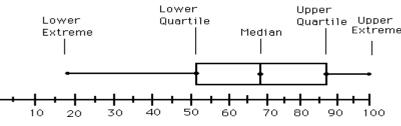
Measuring the Dispersion of Data

- ☐ Quartiles, outliers and boxplots
 - **Quartiles:** Q_1 (25th percentile), Q_3 (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - **Tive number summary:** min, Q_1 , median, Q_3 , max
 - **Boxplot**: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR
- □ Variance and standard deviation (sample: s, population:

$$s^{2} = \sigma_{N-1}^{1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} \right] \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

■ Variance: (algebraic, scalable computation)

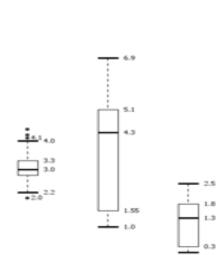
Boxplot Analysis



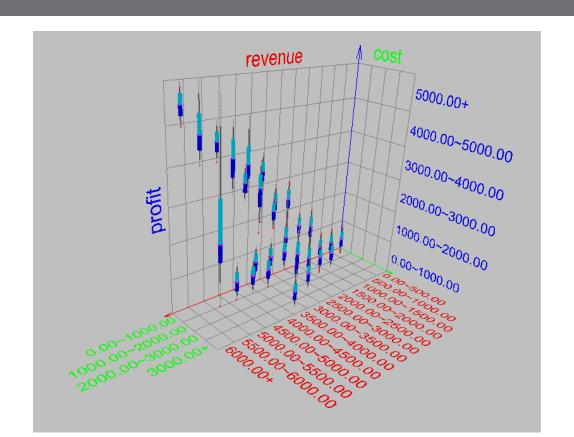
- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum

Boxplot

- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold,
 plotted individually

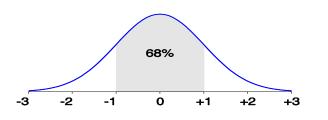


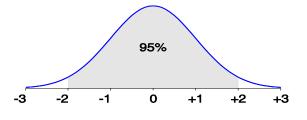
Visualization of Data Dispersion: 3-D Boxplots

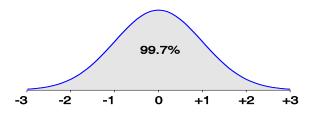


Properties of Normal Distribution Curve

- □ The normal (distribution) curve
 - From μ – σ to μ + σ : contains about 68% of the measurements (μ : mean, σ : standard deviation)
 - From μ –2 σ to μ +2 σ : contains about 95% of it
 - From μ -3 σ to μ +3 σ : contains about 99.7% of it





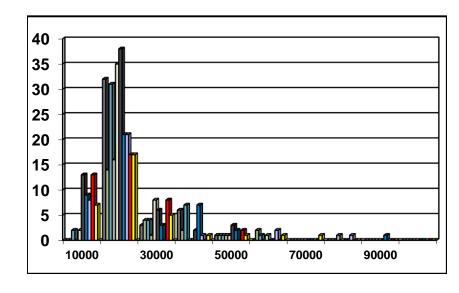


Graphic Displays of Basic Statistical Descriptions

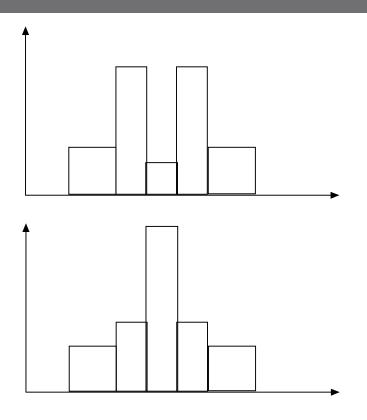
- Boxplot: graphic display of five-number summary
- □ **Histogram**: x-axis contains values, y-axis represents frequencies
- Quantile plot: each value xi is paired with fi indicating that approximately 100 fi % of data are ≤ xi
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
 - It shows what proportion of cases fall into each of several categories
 - Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
 - The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent



Histograms Often Tell More than Boxplots



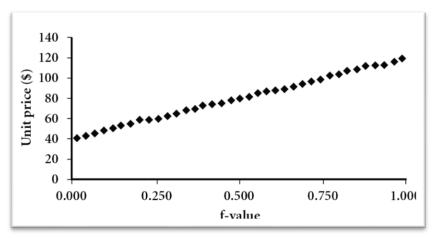
- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information

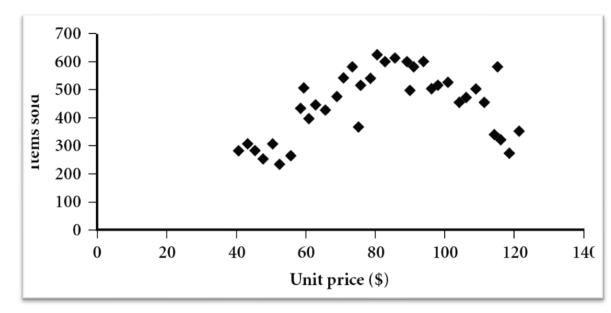
 \blacksquare For a data x_i data sorted in increasing order, f_i indicates

that approximately $100 f_i\%$ of the data are below or equal to the value x_i



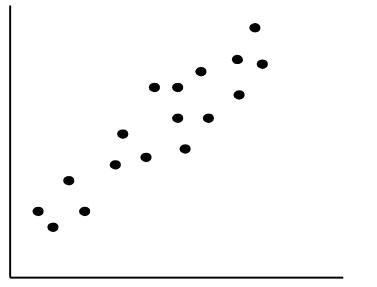
Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc.
- Each pair of
 values is treated
 as a pair of
 coordinates and
 plotted as points
 in the plane

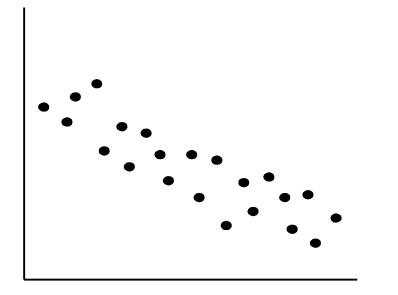


Positively and Negatively Correlated Data

Positively correlated data

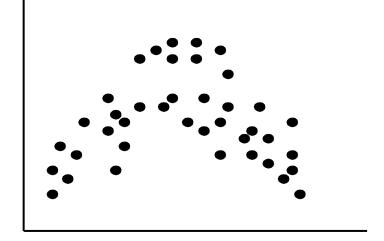


Negative correlated

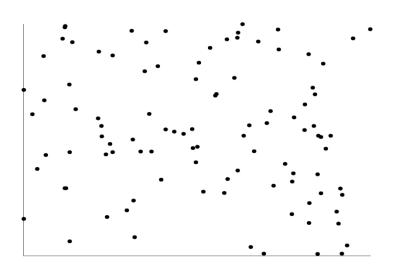


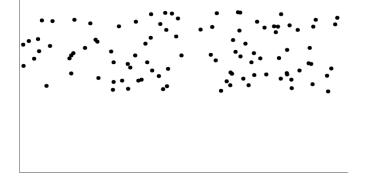
Curvilinear relationships

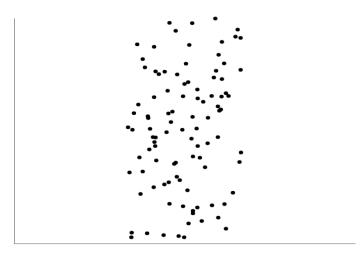
- The left half fragment is positively correlated
- The right half is negative correlated



Uncorrelated Data







Summary

- Basic statistical data description:
 - central tendency,
 - dispersion,
 - graphical displays

6.3: Data Visualization

- 6.1: Data Objects and Attribute Types
- 6.2: Basic Statistical Descriptions of Data
- 6.3: Data Visualization
- 6.4: Data Mining

Learning Objectives

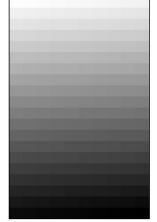
- Describe data visualization techniques:
 - pixel-oriented,
 - geometric projection,
 - □ icon-based,
 - hierarchical,
 - visualizing complex data and relations.

Data Visualization

- Categorization of visualization methods:
 - Pixel-oriented visualization techniques
 - Geometric projection visualization techniques
 - Icon-based visualization techniques
 - Hierarchical visualization techniques
 - Visualizing complex data and relations

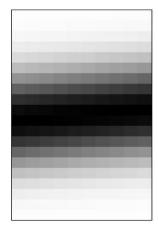
Pixel-Oriented Visualization Techniques

- For a data set of m dimensions, create m windows on the screen, one for each dimension
- The m dimension values of a record are mapped to m pixels at the corresponding positions in the windows
- The colors of the pixels reflect the corresponding values

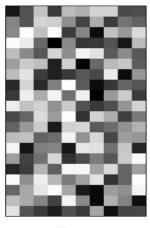


(a) Income

(b) Credit Limit



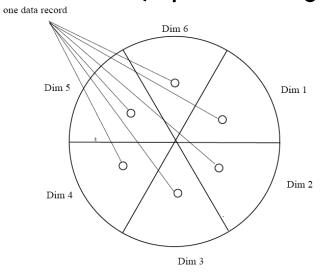
(c) transaction volume



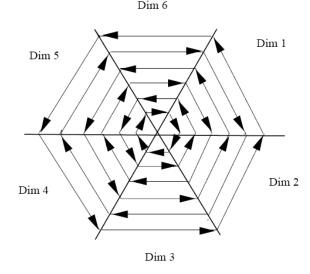
(d) age

Laying Out Pixels in Circle Segments

 To save space and show the connections among multiple dimensions, space filling is often done in a circle segment



(a) Representing a data record in circle segment



(b) Laying out pixels in circle segment

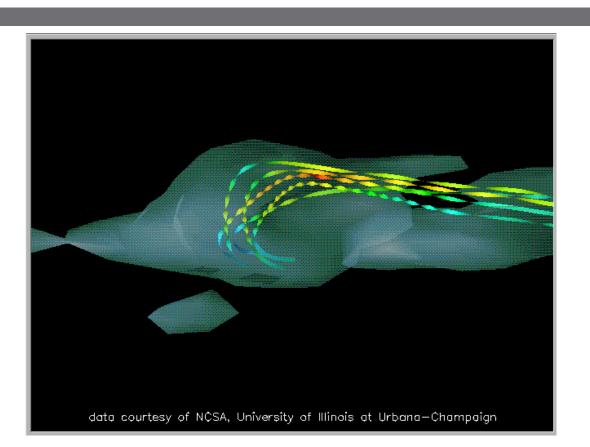
Geometric Projection Visualization Techniques

- Visualization of geometric transformations and projections of the data
- Methods
 - Direct visualization
 - Scatterplot and scatterplot matrices
 - Landscapes

- □ Methods (2)
 - Projection pursuit technique: Help users find meaningful projections of multidimensional data
 - Prosection views
 - Hyperslice
 - Parallel coordinates

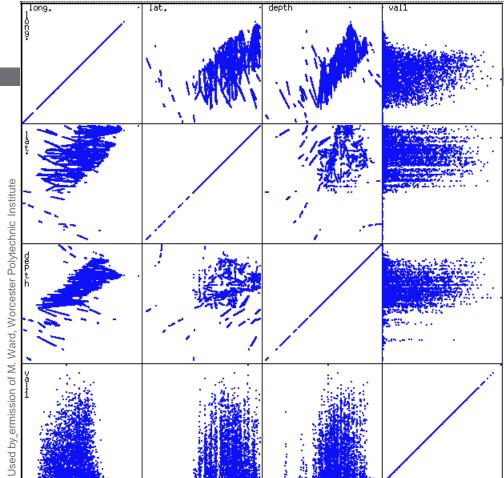
Direct Data Visualization

Ribbons with Twists on Vorticity Based



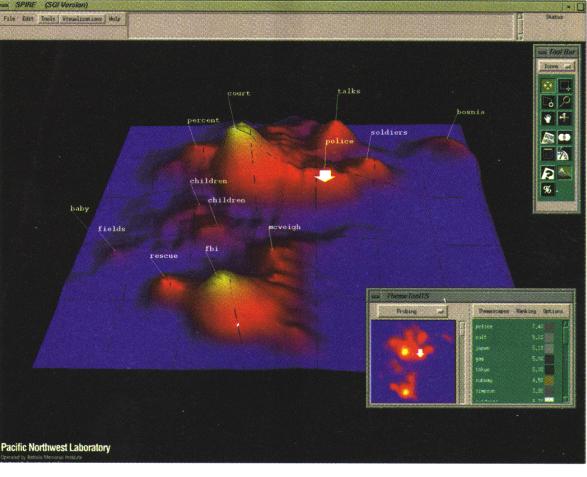
Scatterplot Matrices

Matrix of scatterplots
 (x-y-diagrams) of the
 k-dim. data [total of
 (k2/2-k) scatterplots]



Landscapes

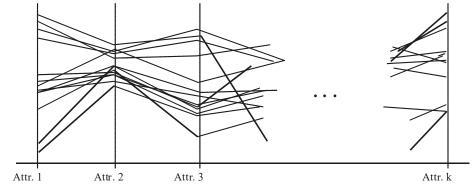
- Visualization of the data as perspective landscape
- The data needs to be transformed into a (possibly artificial)
 2D spatial representation which preserves the characteristics of the data



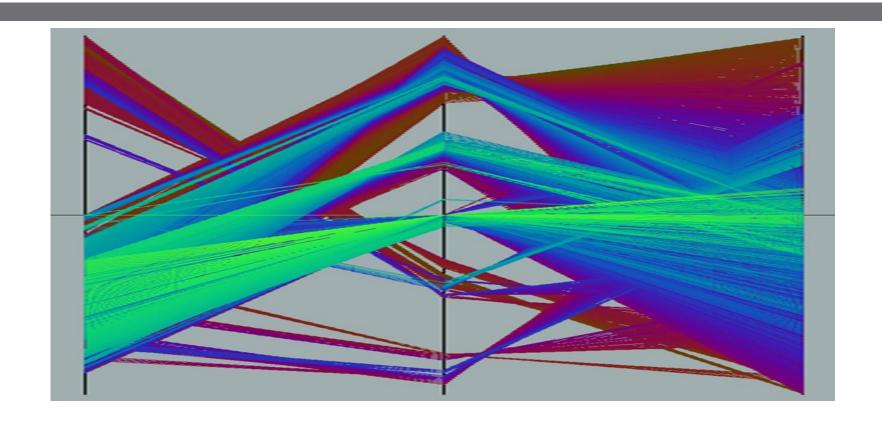
news articles visualized as a landscape

Parallel Coordinates

- n equidistant axes which are parallel to one of the screen axes and correspond to the attributes
- The axes are scaled to the [minimum, maximum]: range of the corresponding attribute
- Every data item corresponds to a polygonal line which intersects each of the axes
 - at the point which corresponds to the value for the attribute



Parallel Coordinates of a Data Set

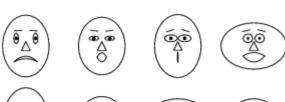


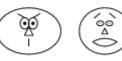
Icon-Based Visualization Techniques

- Visualization of the data values as features of icons
- Typical visualization methods
 - Chernoff Faces
 - Stick Figures
- General techniques
 - Shape coding: Use shape to represent certain information encoding
 - Color icons: Use color icons to encode more information
 - Tile bars: Use small icons to represent the relevant feature vectors in document retrieval

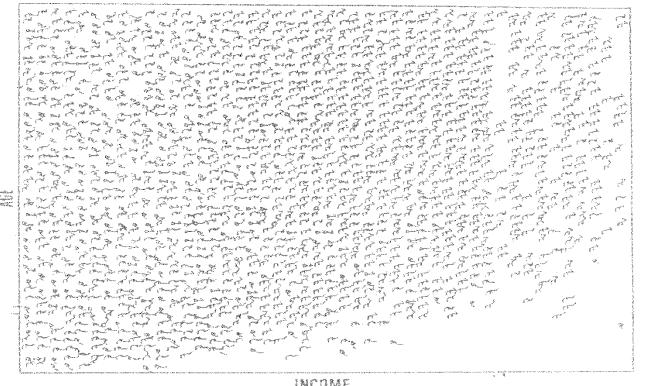
Chernoff Faces

- A way to display variables on a twodimensional surface, e.g., let x be eyebrow slant, y be eye size, z be nose length, etc.
- The figure shows faces produced using 10 characteristics--head eccentricity, eye size, eye spacing, eye eccentricity, pupil size, eyebrow slant, nose size, mouth shape, mouth size, and mouth opening): Each assigned one of 10 possible values, generated using Mathematica (S. Dickson)





Stick Figure



A census data figure showing age, income, gender, education, etc.

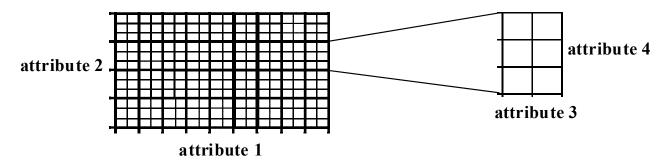
A 5-piece stick figure (1 body and 4 limbs w. different angle/length)

INCOME

Hierarchical Visualization Techniques

- Visualization of the data using a hierarchical partitioning into subspaces
- Methods
 - Dimensional Stacking
 - Worlds-within-Worlds
 - Tree-Map
 - Cone Trees
 - InfoCube

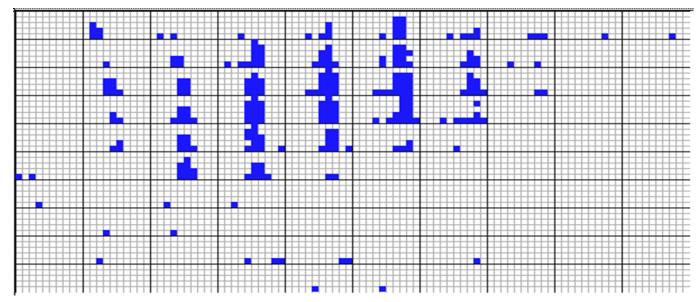
Dimensional Stacking



- Partitioning of the n-dimensional attribute space in 2-D subspaces, which are 'stacked' into each other
- Partitioning of the attribute value ranges into classes. The important attributes should be used on the outer levels.
- Adequate for data with ordinal attributes of low cardinality
- But, difficult to display more than nine dimensions
- Important to map dimensions appropriately

Dimensional Stacking

Visualization of oil mining data with longitude and latitude mapped to the outer x-, y-axes and ore grade and depth mapped to the inner x-, y-axes

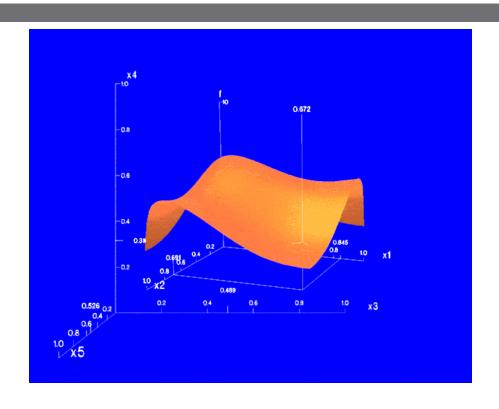


Worlds-within-Worlds

- Assign the function and two most important parameters to innermost world
- Fix all other parameters at constant values - draw other (1 or 2 or 3-dimensional worlds choosing these as the axes)
- Software that uses this paradigm

- N-vision: Dynamic interaction through data glove and stereo displays, including rotation, scaling (inner) and translation (inner/outer)
- Auto Visual: Static interaction using queries

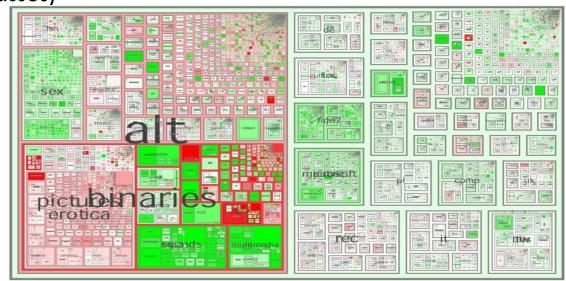
Worlds-within-Worlds (2)



Tree-Map

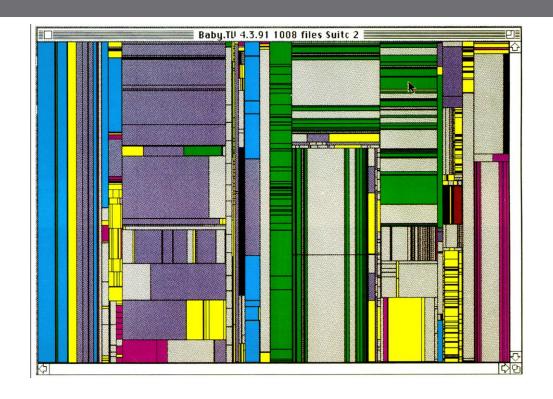
- Screen-filling method which uses a hierarchical partitioning of the screen into regions depending on the attribute values
- The x- and y-dimension of the screen are partitioned alternately according to the attribute values (classes)

MSR Netscan Image



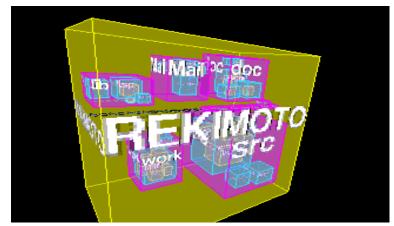
Ack.: http://www.cs.umd.edu/hcil/treemap-history/all102001.jpg

Tree-Map of a File System (Schneiderman)



InfoCube

- A 3-D visualization technique where hierarchical information is displayed as nested semitransparent cubes
- The outermost cubes correspond to the top-level data, while the subnodes or the lower level data are represented as smaller cubes inside the outermost cubes, and so on

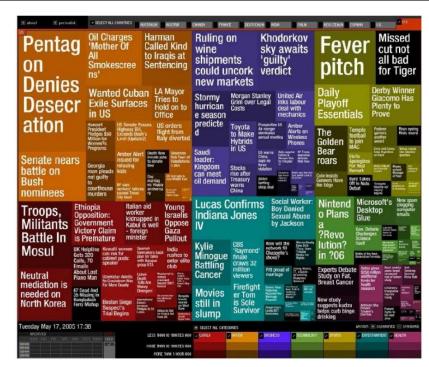


Three-D Cone Trees

- 3D cone tree visualization technique works well for up to a thousand nodes or so
- First, build a 2D circle tree that arranges its nodes in concentric circles centered on the root node
- Cannot avoid overlaps when projected to 2D
- G. Robertson, J. Mackinlay, S. Card. "Cone Trees: Animated 3D Visualizations of Hierarchical Information", ACM SIGCHI'91
- Graph from Nadeau Software Consulting website:
 Visualize a social network dataset that models the way an infection spreads from one person to the next

Visualizing Complex Data and Relations

- Visualizing non-numerical data: text and social networks
- Tag cloud: visualizing usergenerated tags
 - The importance of tag is represented by font size/color
 - Besides text data, there are also methods to visualize relationships, such as visualizing social networks



Newsmap: Google News Stories

Summary

- Data Visualization
 - Gain insight into an information space by mapping data onto graphical primitives
 - Provide qualitative overview of large data sets
 - Search for patterns, trends, structure, irregularities, relationships among data
 - Help find interesting regions and suitable parameters for further quantitative analysis
 - Provide a visual proof of computer representations derived

56

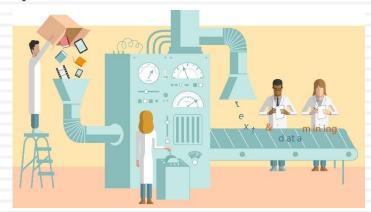
6.4: Data Mining

6.1: Data Objects and Attribute Types

6.2: Basic Statistical Descriptions of Data

6.3: Data Visualization

6.4: Data Mining



Learning Objectives

- Define data mining
- Understand knowledge discovery process
- □ List data mining functions
- □ Explain classification, cluster analysis
- Describe applications of data mining

Trends leading to Big Data

- □ The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras, YouTube
- We are drowning in data, but starving for knowledge!
- "Necessity is the mother of invention"—Data mining—Automated analysis of massive data sets

Evolution of Database Technology

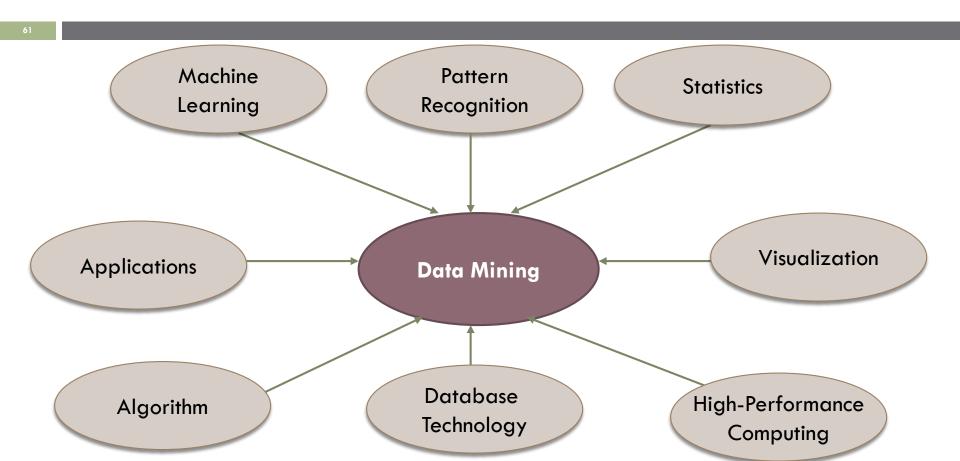
- □ 1960s:
 - Data collection, database creation, IMS and network DBMS
- □ 1970s:
 - Relational data model, relational DBMS implementation
- □ 1980s:
 - RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
 - Application-oriented DBMS (spatial, scientific, engineering, etc.)

- □ 1990s:
 - Data mining, data warehousing, multimedia databases, and Web databases
- 2000s
 - Stream data management and mining
 - Data mining and its applications
 - Web technology (XML, data integration) and global information systems

Definition of Data Mining

- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, previously unknown and <u>potentially useful</u>) patterns or knowledge from huge amount of data
- □ Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.

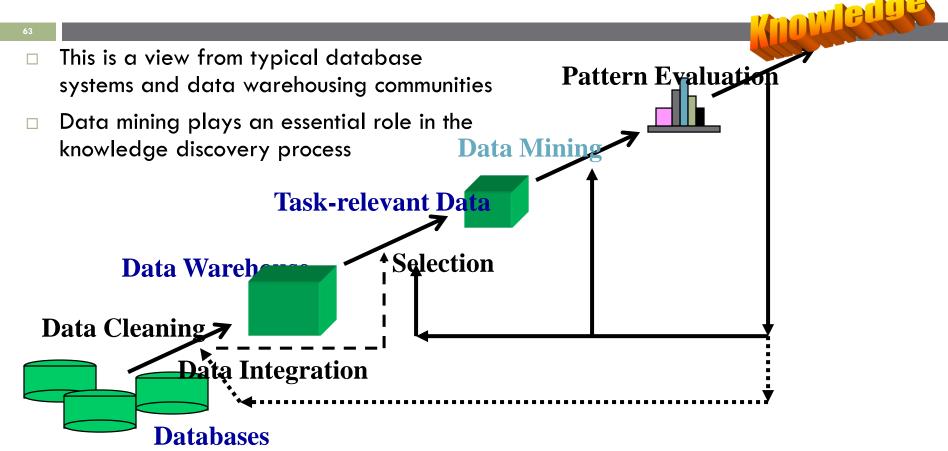
Data Mining: Confluence of Multiple Disciplines (1)



Data Mining: Confluence of Multiple Disciplines (2)

- Tremendous amount of data
 - Algorithms must be highly scalable to handle such as terabytes of data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social networks and multi-linked data
 - Heterogeneous databases and legacy databases
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications

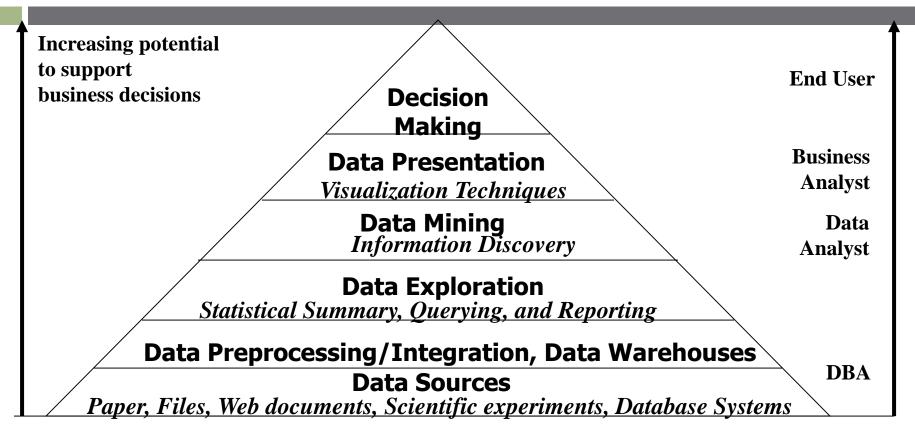
Knowledge Discovery (KDD) Process



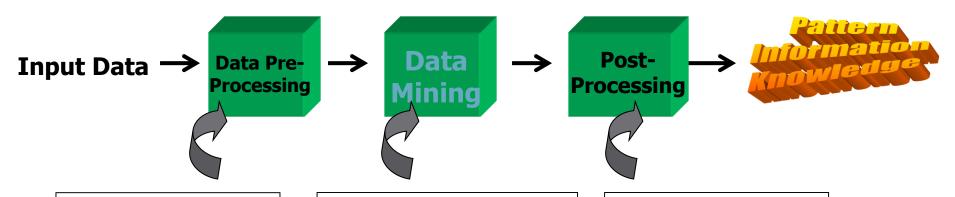
Example: A Web Mining Framework

- Web mining usually involves
 - Data cleaning
 - Data integration from multiple sources
 - Warehousing the data
 - Data cube construction
 - Data selection for data mining
 - Data mining
 - Presentation of the mining results
 - Patterns and knowledge to be used or stored in a knowledge-base

Data Mining in Business Intelligence



KDD Process: A Typical View from ML and Statistics



Data integration
Normalization
Feature selection
Dimension reduction

Pattern discovery
Association & correlation
Classification
Clustering
Outlier analysis

Pattern evaluation
Pattern selection
Pattern interpretation
Pattern visualization

This is a view from typical machine learning and statistics communities

Multi-Dimensional View of Data Mining (1)

Data to be mined

Database data (extended-relational, object-oriented, heterogeneous, legacy), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks

Knowledge to be mined (or: Data mining functions)

- Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc.
- Descriptive vs. predictive data mining
- Multiple/integrated functions and mining at multiple levels

Multi-Dimensional View of Data Mining (2)

□ Techniques utilized

Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance, etc.

Applications adapted

■ Retail, telecommunication, banking, fraud analysis, biodata mining, stock market analysis, text mining, Web mining, etc.

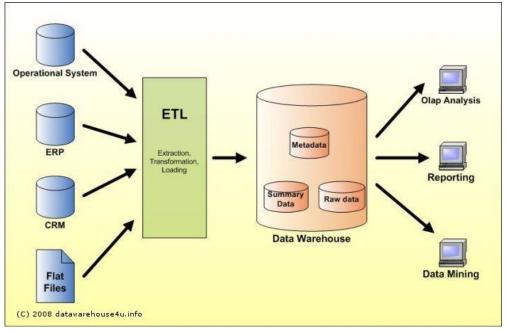
Data Mining: On What Kinds of Data?

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and multi-linked data
 - Object-relational databases
 - Heterogeneous databases and legacy databases
 - Spatial data and spatiotemporal data
 - Multimedia database
 - Text databases
 - The World-Wide Web

Data Mining Function: (1) Generalization

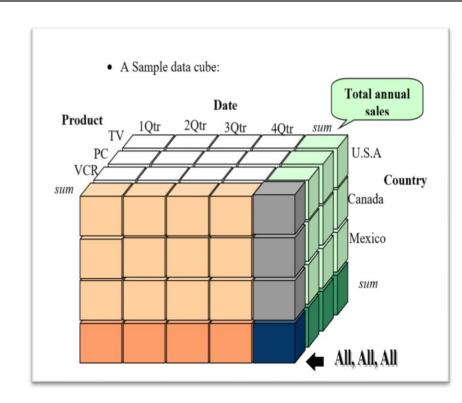
Information integration and data warehouse construction

Data cleaning, transformation, integration, and multidimensional data model



Data Mining Function: (1) Generalization

- Data cube technology
 - Scalable methods for computing
 - (multidimensional aggregates
 - OLAP (online analytical processing)



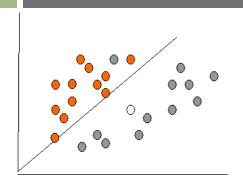
Data Mining Function: (2) Association and Correlation Analysis

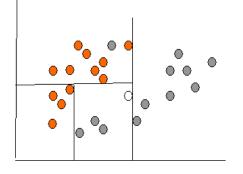
- Frequent patterns (or frequent itemsets)
 - What items are frequently purchased together at your grocery store?
- Association, correlation vs. causality
 - A typical association rule
 - Diaper \rightarrow Beer [0.5%, 75%] (support, confidence)
 - Are strongly associated items also strongly correlated?
- How to mine such patterns and rules efficiently in large datasets?
- How to use such patterns for classification, clustering, and other applications?

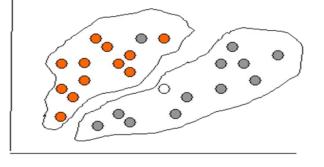
Data Mining Function: (3) Classification

- Classification and label prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 - E.g., classify countries based on (climate), or classify cars based on (gas mileage)
 - Predict some unknown class labels
- Typical methods
 - Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, pattern-based classification, logistic regression, ...
- Typical applications:
 - Credit card fraud detection, direct marketing, classifying stars, diseases, web-pages, ...

Classification: Examples







b) Linear Regression

- w0 + w1 x + w2 y >= 0
- Regression computes wi from data to minimize squared error to 'fit' the data
- Not flexible enough

b) Decision tree

- \Box if (X > 5) then grey
- \Box else if (Y > 3) then orange
- \Box else if (X > 2) then grey
- else orange

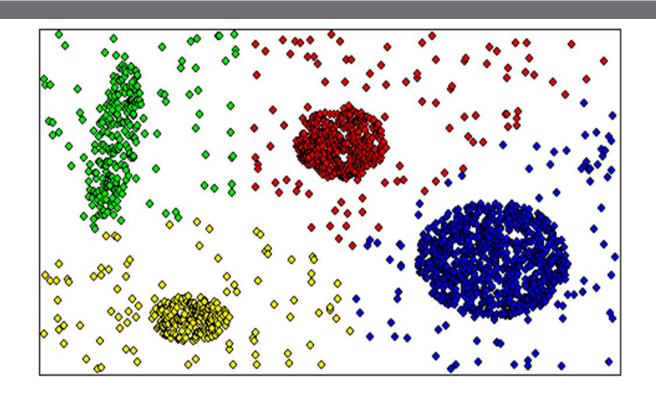
b) Neural network

- Can select more complex regions
- Can be more accurate
- Also can overfit the data find patterns in random noise

Data Mining Function: (4) Cluster Analysis

- Unsupervised learning (i.e., Class label is unknown)
- Group data to form new categories (i.e., clusters),
 e.g., cluster houses to find distribution patterns
- Principle: Maximizing intra-class similarity & minimizing interclass similarity
- Many methods and applications

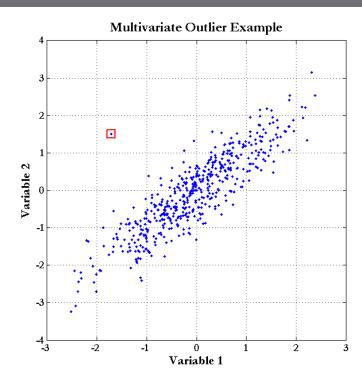
Cluster Analysis: Example



Data Mining Function: (5) Outlier Analysis

Outlier analysis

- Outlier: A data object that does not comply with the general behavior of the data
- Noise or exception? One person's garbage could be another person's treasure
- Methods: by-product of clustering or regression analysis, ...
- Useful in fraud detection, rare events analysis



Time and Ordering: Sequential Pattern, Trend and Evolution Analysis

- Sequence, trend and evolution analysis
 - Trend, time-series, and deviation analysis: e.g., regression and value prediction
 - Sequential pattern mining
 - e.g., first buy digital camera, then buy large SD memory cards
 - Periodicity analysis
 - Motifs and biological sequence analysis
 - Approximate and consecutive motifs
 - Similarity-based analysis
- Mining data streams
 - Ordered, time-varying, potentially infinite, data streams

Structure and Network Analysis

- Graph mining
 - Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)
- Information network analysis
 - Social networks: actors (objects, nodes) and relationships (edges)
 - e.g., author networks in CS, terrorist networks
 - Multiple heterogeneous networks
 - A person could be multiple information networks: friends, family, classmates, ...
 - Links carry a lot of semantic information: Link mining
- Web mining
 - Web is a big information network: from PageRank to Google
 - Analysis of Web information networks
 - Web community discovery, opinion mining, usage mining, ...

Applications of Data Mining

- Web page analysis: from web page classification, clustering to PageRank & HITS algorithms
- Collaborative analysis & recommender systems
- Basket data analysis to targeted marketing
- Biological and medical data analysis: classification, cluster analysis (microarray data analysis), biological sequence analysis, biological network analysis
- Data mining and software engineering (e.g., IEEE Computer, Aug. 2009 issue)
- From major dedicated data mining systems/tools (e.g., SAS, MS SQL-Server Analysis Manager, Oracle Data Mining Tools) to invisible data mining

Summary

- Data mining: Discovering interesting patterns and knowledge from massive amount of data
- A natural evolution of database technology, in great demand, with wide applications
- A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
- Mining can be performed in a variety of data
- Data mining functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc.